

Deep Learning

15 Self-Attention & Transformers - I

Dr. Konda Reddy Mopuri Dept. of AI, IIT Hyderabad Jan-May 2025

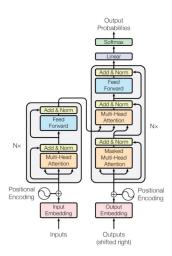
Why does one need to think beyond LSTMs?

- Why does one need to think beyond LSTMs?
- Sequential processing doesn't allow parallelization
 - Path length = $\mathbb{O}(n)$
 - \bullet RNNs need $\mathbb{O}(\mathbf{n})$ steps to process a sentence of length n

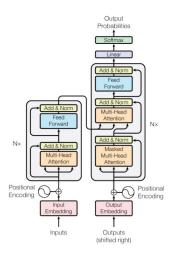
① (Despite the LSTM/GRU) RNNs need attention to deal with long-range dependencies

- ① (Despite the LSTM/GRU) RNNs need attention to deal with long-range dependencies
- ② Since attention enables access to any state, do we need RNNs?

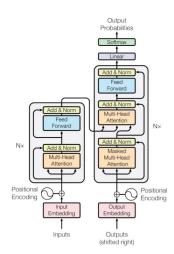
Introduced by Vaswani et al. NeurIPS 2017



- Introduced by Vaswani et al. NeurIPS 2017
- ② Sequence to sequence modeling without RNNs

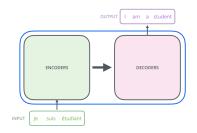


- Introduced by Vaswani et al. NeurIPS 2017
- Sequnce to sequence modeling without RNNs
- Transformer model is built on self-attention (no recurrence or convolutions)

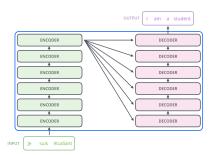


Credits: Jay Alammar

Credits: Jay Alammar

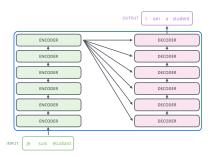


Credits: Jay Alammar



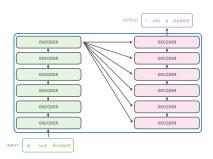
Credits: Jay Alammar

The Encoding module has a stack of encoders



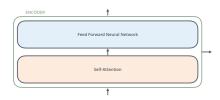
Credits: Jay Alammar

- The Encoding module has a stack of encoders
- Same structure different parameters



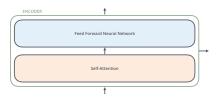
Credits: Jay Alammar

- The Encoding module has a stack of encoders
- Same structure different parameters
- Similarly, the decoding module



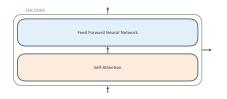
Credits: Jay Alammar

Encoder first has a self-attention layer



Credits: Jay Alammar

- Encoder first has a self-attention layer
- 2 Looks at the other words while encoding a specific word



Credits: Jay Alammar

- Encoder first has a self-attention layer
- 2 Looks at the other words while encoding a specific word
- Next a (same) feed-forward NN is applied at all positions

Encoder-Decoder Attention looks

- Encoder-Decoder Attention looks
- **From**: a decoder (current) state

- Encoder-Decoder Attention looks
- ② From: a decoder (current) state
- 3 To: all the encoder states

- Encoder-Decoder Attention looks
- From: a decoder (current) state
- 3 To: all the encoder states

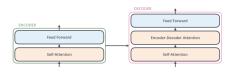
Self-Attention looks

- Encoder-Decoder Attention looks
- **From**: a decoder (current) state
- 3 To: all the encoder states

- Self-Attention looks
- 2 From: each state from a set of states

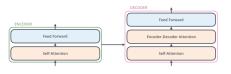
- Encoder-Decoder Attention looks
- From: a decoder (current) state
- To: all the encoder states

- Self-Attention looks
- From: each state from a set of states
- 3 To: all other states in the same set



Credits: Jay Alammar

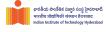
 Decoder has both the layers (self-attention and shared feed-forward)



Credits: Jay Alammar

- Decoder has both the layers (self-attention and shared feed-forward)
- ② But, in the middle it has an encoder-decoder attention layer

Why the name 'Transformer'?



Transforms a set of vectors in some representation space into a corresponding set of vectors (same dimensionality) in some new space

Why the name 'Transformer'?

- Transforms a set of vectors in some representation space into a corresponding set of vectors (same dimensionality) in some new space
- 2 Goal: new space will have a richer internal representation that is better suited to solve the downstream task

Start with turning each word into a vector at the bottom-most encoder

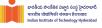


Credits: Jay Alammar

- Start with turning each word into a vector at the bottom-most encoder
- Others receive a list of vectors from the encoder immediately below

Credits: Jay Alammar

Who is doing: all source tokens



- Who is doing: all source tokens
- What are they doing (repeat)
 - look at each other
 - update representations

- Who is doing: all source tokens
- Decoder
- What are they doing (repeat)
 - look at each other
 - update representations

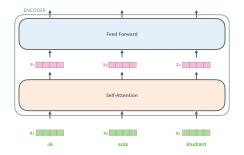
- Who is doing: all source tokens
- What are they doing (repeat)
 - look at each other
 - update representations

- Decoder
- Who is doing: target token at each time step

- Who is doing: all source tokens
- What are they doing (repeat)
 - look at each other
 - update representations

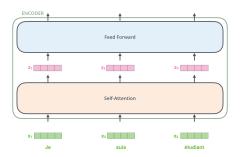
- Decoder
- Who is doing: target token at each time step
- What are they doing (repeat)
 - looks at previous target tokens (self-attention)
 - looks at source representations (encoder-decoder attention)
 - update representation

Each word flows through the two layers of the encoder through its own path

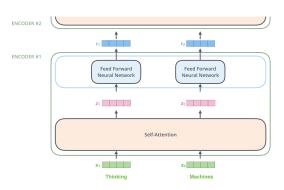


Credits: Jay Alammar

- Each word flows through the two layers of the encoder through its own path
- $\ \, \ \, \ \,$ Self-attention layer has dependencies among them. However, the path length is $\mathbb{O}(1)$



Credits: Jay Alammar



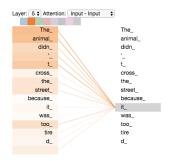
Credits: Jay Alammar

- The animal didn't cross the street because it was too tired
- The animal didn't cross the street because it was too wide

- The animal didn't cross the street because it was too tired
- The animal didn't cross the street because it was too wide
- 3 What does 'it' refer to?

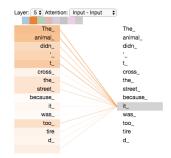
- The animal didn't cross the street because it was too tired
- The animal didn't cross the street because it was too wide
- What does 'it' refer to?
- Easy for humans, but not so much for the traditional Seq2Seq models

As the model processes each word, self-attention attends other positions in the i/p sequence to encode better



Credits: Jay Alammar

- As the model processes each word, self-attention attends other positions in the i/p sequence to encode better
- Unlike RNNs, we don't keep hidden states from previous positions here!



Credits: Jay Alammar

f 1 Input tokens $f x_1, f x_2, \dots f x_N$

- $\textbf{1} \quad \text{Input tokens } x_1, x_2, \dots x_N$
- Output tokens $y_1, y_2, \dots y_N$
- 3 $\mathbf{y}_n = \sum_{m=1}^N \mathbf{a}_{nm} \cdot \mathbf{x}_m$

- $\textbf{1} \text{ Input tokens } x_1, x_2, \dots x_N$
- Output tokens $y_1, y_2, \dots y_N$
- 3 $y_n = \sum_{m=1}^N a_{nm} \cdot x_m$
- \bullet $a_{mn} \geq 0$ and $\sum_{m=1}^{N} a_{mn} = 1$ Why?

A simple way is to use the 'dot product' self-attention

- A simple way is to use the 'dot product' self-attention
- $a_{nm} = \frac{exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}})}{\sum_{m'=1}^{N} exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}}')}$

- A simple way is to use the 'dot product' self-attention
- $a_{nm} = \frac{exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}})}{\sum_{m'=1}^{N} exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}}')}$
- $\textbf{3} \ \ Y = \mathsf{Softmax}[XX^T]X$

How to compute the Attention weights?

- A simple way is to use the 'dot product' self-attention
- $a_{nm} = \frac{exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}})}{\sum_{m'=1}^{N} exp(\mathbf{x}_{\mathbf{n}}^{\mathbf{T}}\mathbf{x}_{\mathbf{m}}')}$
- $\textbf{3} \ \ Y = \mathsf{Softmax}[XX^T]X$
- $oldsymbol{4}$ The transformation from ${\bf X}$ to ${\bf Y}$ is fixed; has no capacity to learn from the data

How to compute the Attention weights?

- A simple way is to use the 'dot product' self-attention
- $a_{nm} = \frac{exp(\mathbf{x_n^T x_m})}{\sum_{m'=1}^{N} exp(\mathbf{x_n^T x_m'})}$
- $\textbf{3} \ \ Y = \mathsf{Softmax}[XX^T]X$
- **4** The transformation from X to Y is fixed; has no capacity to learn from the data
- Search of the feature values in a token plays an equal role in determining the attention weights

Consider a streaming platform and the problem of choosing which movie to watch

- Consider a streaming platform and the problem of choosing which movie to watch
- ② One approach would be

- Consider a streaming platform and the problem of choosing which movie to watch
- ② One approach would be
- 3 Associate each movie with a list of attributes (genre, actors, technicians, length, year, etc.) \rightarrow Key

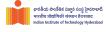
- Consider a streaming platform and the problem of choosing which movie to watch
- ② One approach would be
- **3** Associate each movie with a list of attributes (genre, actors, technicians, length, year, etc.) \rightarrow Key
- 4 These form a catalog of movies to be searched for

- Consider a streaming platform and the problem of choosing which movie to watch
- ② One approach would be
- 3 Associate each movie with a list of attributes (genre, actors, technicians, length, year, etc.) \rightarrow Key
- These form a catalog of movies to be searched for
- The movie file itself is the Value

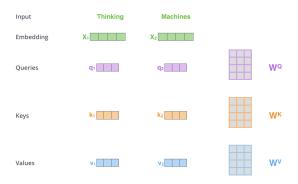
- Consider a streaming platform and the problem of choosing which movie to watch
- ② One approach would be
- **3** Associate each movie with a list of attributes (genre, actors, technicians, length, year, etc.) \rightarrow Key
- These form a catalog of movies to be searched for
- The movie file itself is the Value
- **6** User's input of desired attributes \rightarrow Query

- $\mathbf{2} \mathbf{K} = \mathbf{X} \mathbf{W}^{(\mathbf{k})}$

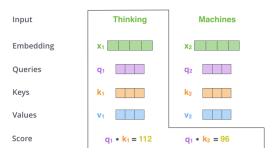
- $\mathbf{3} \ \mathbf{V} = \mathbf{X} \mathbf{W}^{(\mathbf{v})}$



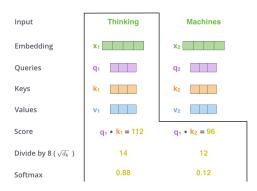
- $\mathbf{0} \ \mathbf{Q} = \mathbf{X} \mathbf{W}^{(\mathbf{q})}$
- **3V**=**XW**^(v)



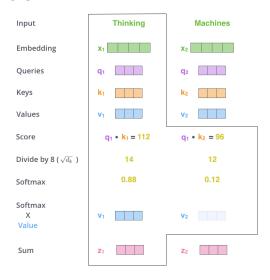
Credits: Jay Alammar



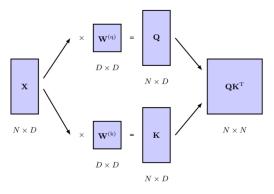
Credits: Jay Alammar



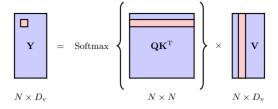
Credits: Jay Alammar



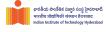
Credits: Jay Alammar



Credits: The Bishop's book



Credits: The Bishop's book



Gradients of the softmax become exponentially small for large input magnitudes

- Gradients of the softmax become exponentially small for large input magnitudes
- f 2 To prevent this, the ${f Q}{f K}^{f T}$ is scaled before the softmax

- Gradients of the softmax become exponentially small for large input magnitudes
- f 2 To prevent this, the ${f Q}{f K}^{f T}$ is scaled before the softmax
- 3 If the elements of q and v vectors are independent N(0,1) distributed, the variance of the dot product $\to D_k$

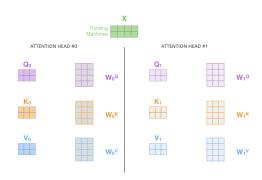
- Gradients of the softmax become exponentially small for large input magnitudes
- f 2 To prevent this, the ${f Q}{f K}^{f T}$ is scaled before the softmax
- f 3 If the elements of q and v vectors are independent N(0,1) distributed, the variance of the dot product $o D_k$
- 4 Hence, normalize the product by the standard deviation $\mathbf{Y} = \mathsf{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \mathsf{Softmax}[\frac{\mathbf{Q}\mathbf{K^T}}{\sqrt{D_k}}]\mathbf{V}$

Multi-headed Self-Attention

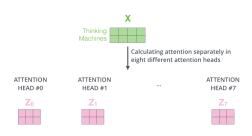
There may be multiple patterns of attention that are relevant at the same time

Multi-headed Self-Attention

- There may be multiple patterns of attention that are relevant at the same time
- ② E.g., some patterns relevant to the 'tense' while others might be associated with the 'vocabulary.'



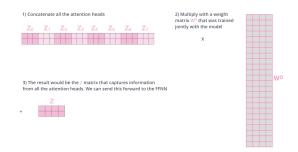
Credits: Jay Alammar



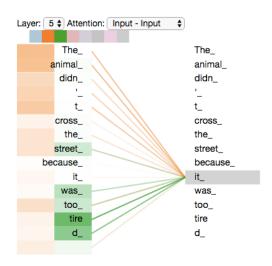
Credits: Jay Alammar

Expands the model's ability to focus on different relevant positions in the i/p

- Expands the model's ability to focus on different relevant positions in the i/p
- ② Enables different 'representational subspace'



Credits: Jay Alammar



Credits: Jay Alammar

Neural nets benefit greatly from the depth

- Neural nets benefit greatly from the depth
- $exttt{@} o exttt{stack multiple self-attention layers}$

- Neural nets benefit greatly from the depth
- extstyle o stack multiple self-attention layers
- To improve the training efficiency, introduce residual connections (requires to maintain the dimensionality)

- Neural nets benefit greatly from the depth
- $exttt{2}
 ightarrow ext{stack multiple self-attention layers}$
- To improve the training efficiency, introduce residual connections (requires to maintain the dimensionality)
- \P Followed by Layer normalization $\mathbf{Z} = \text{LayerNorm}[\mathbf{Y}(\mathbf{X}) + \mathbf{X}]$

Output vectors are constrained to lie in the subspace spanned by the i/p vectors

- ① Output vectors are constrained to lie in the subspace spanned by the i/p vectors
- Enhance the expressive capability/flexibility by post-processing using a nonlinear neural net (MLP)

- Output vectors are constrained to lie in the subspace spanned by the i/p vectors
- Enhance the expressive capability/flexibility by post-processing using a nonlinear neural net (MLP)

- Output vectors are constrained to lie in the subspace spanned by the i/p vectors
- Enhance the expressive capability/flexibility by post-processing using a nonlinear neural net (MLP)
- This should not affect the transformer's ability to process variable length i/p
- Same share net applies to all the o/p tokens (followed by residual connection and normalization)
 Taxan Name [MID [7] + 7]
 - $ilde{\mathbf{X}} = \mathbf{LayerNorm}[\mathsf{MLP}[\mathbf{Z}] + \mathbf{Z}]$