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@ Why does one need to think beyond LSTMs?
@ Sequential processing doesn't allow parallelization

o Path length = O(n)
o RNNs need O(n) steps to process a sentence of length n
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@ (Despite the LSTM/GRU) RNNs need attention to deal with
long-range dependencies
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@ (Despite the LSTM/GRU) RNNs need attention to deal with
long-range dependencies

@ Since attention enables access to any state, do we need RNNs?
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Transformers
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Transformers

@ Introduced by Vaswani et al. .
Neu rlPS 2017 Probabilities

@ Sequnce to sequence modeling
without RNNs

@ Transformer model is built on
self-attention (no recurrence or
convolutions)
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I am a student

Credits: Jay Alammar
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@ The Encoding module has a
— stack of encoders
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@ The Encoding module has a

| am a student

1 stack of encoders

ENCODER

parameters
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= @ Same structure different

Credits: Jay Alammar
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@ The Encoding module has a

| am a student

1 stack of encoders

ENCODER

parameters

@ Similarly, the decoding module

ENCODER
ENCODER

NPUT | Je  suis  étudiant

= @ Same structure different

Credits: Jay Alammar
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@ Encoder first has a

oo t self-attention layer
t
t

Credits: Jay Alammar
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@ Encoder first has a

, t . self-attention layer

[ Fed forar el o ] @ Looks at the other words while
[ f j—- encoding a specific word
; ? ')

Credits: Jay Alammar
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@ Encoder first has a
t self-attention layer
[ e oo e ] @ Looks at the other words while
f — encoding a specific word
[ j ® Next a (same) feed-forward
f NN is applied at all positions

Credits: Jay Alammar
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@ Encoder-Decoder Attention @ Self-Attention looks

looks @ From: each state from a set of
@ From: a decoder (current) states

state

@ To: all the encoder states
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Attention vs Self-attention “ o

@ Encoder-Decoder Attention @ Self-Attention looks

looks @ From: each state from a set of
@ From: a decoder (current) states

state @ To: all other states in the
@ To: all the encoder states same set
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@ Decoder has both the layers
t (self-attention and shared

) ) feed-forward)
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Credits: Jay Alammar
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t (self-attention and shared
| i) feed-forward)
— ) — ) @ But, in the middle it has an
encoder-decoder attention

Credits: Jay Alammar |
ayer
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Why the name ‘Transformer’?

@ Transforms a set of vectors in some representation space into a
corresponding set of vectors (same dimensionality) in some new space
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Why the name ‘Transformer’?

@ Transforms a set of vectors in some representation space into a
corresponding set of vectors (same dimensionality) in some new space

@ Goal: new space will have a richer internal representation that is
better suited to solve the downstream task
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@ Start with turning each word into a vector at the bottom-most
encoder

[TTT] [TTT] [T T 1]

Credits: Jay Alammar
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@ Start with turning each word into a vector at the bottom-most
encoder

@ Otbhers receive a list of vectors from the encoder immediately below

[TTT] [TTT] [T T 1]

Credits: Jay Alammar
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Self-attention in Encoder vs. Decoder ™

@ Who is doing: all source tokens
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@ Who is doing: all source tokens
@ What are they doing (repeat)

o look at each other
o update representations
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Self-attention in Encoder vs. Decoder “ bl

@ Who is doing: all source tokens @ Decoder

@ What are they doing (repeat) @ Who is doing: target token at
o look at each other each time step
o update representations
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Self-attention in Encoder vs. Decoder “ el

@ Who is doing: all source tokens @ Decoder

@ What are they doing (repeat) @ Who is doing: target token at
o look at each other each time step

o update representations ® What are they doing (repeat)

o looks at previous target
tokens (self-attention)

o looks at source
representations
(encoder-decoder attention)

o update representation
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Transformers-Encoding

@ Each word flows through the two layers of the encoder through its

own path
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Transformers-Encoding

@ Each word flows through the two layers of the encoder through its
own path

@ Self-attention layer has dependencies among them. However, the path
length is O(1)

t 1 1
f f f
o i s o i
t t t
[ Self-Attention ]
t + t

11 1 s 1

Credits: Jay Alammar
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@ The animal didn’t cross the street because it was too
tired

@ The animal didn’t cross the street because it was too
wide
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@ The animal didn’t cross the street because it was too
tired

@ The animal didn’t cross the street because it was too
wide

@ What does 'it’ refer to?
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@ The animal didn’t cross the street because it was too
tired

@ The animal didn’t cross the street because it was too
wide

@ What does ‘it refer to?

@ Easy for humans, but not so much for the traditional Seq2Seq models
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Self-Attention

@ As the model processes each
word, self-attention attends
other positions in the i/p
sequence to encode better

Layer: | 5 #| Attention: [ Input - Input
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the.
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Self-Attention

@ As the model processes each
word, self-attention attends
other positions in the i/p
sequence to encode better

@ Unlike RNNs, we don't keep
hidden states from previous
positions here!
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Attention weights

@ Input tokens x1,Xa,...XN
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Attention weights

@ Input tokens x1,Xa,...XN
@ Output tokens y1,y2,... YN

N
® Yn = Zm:l Anm * Xm
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Attention weights

@ Input tokens x1,Xa,...XN

@ Output tokens y1,y2,... YN

@ yn= 22:1 Anm * Xm

@ amn >0and N apn =1 Why?
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@ A simple way is to use the ‘dot product’ self-attention
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How to compute the Attention welght!b e

@ A simple way is to use the ‘dot product’ self-attention

exp(XL Xm)

iy CP(XERL)

@ apm =
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@ A simple way is to use the ‘dot product’ self-attention
exp(X Xm)
iy CP(XERL)

@ Y = Softmax[XXT]X

@ apm =
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How to compute the Attention weight!l?

@ A simple way is to use the ‘dot product’ self-attention
exp(XE Xm)

S ep(xTxp)

@ Y = Softmax[XXT]X

@ The transformation from X to Y is fixed; has no capacity to learn
from the data

@ apm =
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How to compute the Attention welghtn‘

A simple way is to use the ‘dot product’ self-attention
a _ exp(XE Xm)
nm ZZ’:l exp(xXxL,)
Y = Softmax[XXT]X
The transformation from X to Y is fixed; has no capacity to learn
from the data

©®06 06 6

©

Each of the feature values in a token plays an equal role in
determining the attention weights
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Some terminology from Information Rétrieval-

@ Consider a streaming platform and the problem of choosing which
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@ One approach would be

@ Associate each movie with a list of attributes (genre, actors,
technicians, length, year, etc.) — Key
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Some terminology from Information Rélrievﬁ"lw-m

@ Consider a streaming platform and the problem of choosing which
movie to watch

@ One approach would be

@ Associate each movie with a list of attributes (genre, actors,
technicians, length, year, etc.) — Key

@ These form a catalog of movies to be searched for

The movie file itself is the Value

©

® User's input of desired attributes — Query
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Self-Attention

@ Q=XW
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Self-Attention

@ Q=XW
@ K=XWk
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Self-Attention

@ Q=XW
@ K=XWk
® V=XWW
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@ Q=XW
@ K=XWk
® V=XWW

@ Y = Softmax[QKT|V

Dr. Konda Reddy Mopuri dl - 15/ Self Attention & Transformers - | 21



Self-Attention

Dr. Konda Reddy Mopuri

a-oécm 0385 e 09 PpoTens
< feT
mm Institute 01 Technology Hyderabad

Input Thinking Machines
bedd x: [ X [
Queries oI o« we
Keys [ k[T
Values vajj szjj wv

Credits: Jay Alammar

dl - 15/ Self Attention & Transformers - | 22


https://jalammar.github.io/illustrated-transformer/

Self-Attention

Input

Embedding
Queries
Keys
Values

Score

Dr. Konda Reddy Mopuri

Thinking

I a-oécm 0388 e 0 .y-swu-é
mm Instiute 01 o 0I0gy Hyderabad

Machines

x: [N

Credits: Jay Alammar

dl - 15/ Self Attention & Transformers - | 23


https://jalammar.github.io/illustrated-transformer/

a-séw 0385 e 09 PpoTens
-
Self-Attention D

Input Thinking Machines

[T ] |
Queries q1 D:‘j qz D:\:‘
Keys T
Values Vi D:\:‘

Embedding X1 | X2 I |

Score qire ki=
Divide by 8 (Vdx )

Softmax

Credits: Jay Alammar
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Credits: The Bishop's book
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Y = Softmax QK™ X \%

N x D, N x N N x Dy

Credits: The Bishop's book
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Scaled Self-Attention

@ Gradients of the softmax become exponentially small for large input
magnitudes
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@ Gradients of the softmax become exponentially small for large input
magnitudes

@ To prevent this, the QKT is scaled before the softmax
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@ Gradients of the softmax become exponentially small for large input
magnitudes

@ To prevent this, the QKT is scaled before the softmax

@ If the elements of ¢ and v vectors are independent N(0,1)
distributed, the variance of the dot product — Dy,
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Scaled Self-Attention

@ Gradients of the softmax become exponentially small for large input
magnitudes

@ To prevent this, the QKT is scaled before the softmax

@ If the elements of ¢ and v vectors are independent N (0, 1)
distributed, the variance of the dot product — Dy,

@ Hence, normalize the product by the standard deviation
Y = Attention(Q, K, V) = Softmax[?/%]V
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@ There may be multiple patterns of attention that are relevant at the
same time
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Multi-headed Self-Attention |

@ There may be multiple patterns of attention that are relevant at the
same time

@ E.g., some patterns relevant to the ‘tense’ while others might be
associated with the ‘vocabulary!
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ATTENTION HEAD #1

Credits: Jay Alammar
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Multi-headed Self-Attention _

X

Calculating attention separately in
eight different attention heads

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

H = HH

Credits: Jay Alammar
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Multi-headed Self-Attention |

@ Expands the model's ability to focus on different relevant positions in
the i/p
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Multi-headed Self-Attention |

@ Expands the model's ability to focus on different relevant positions in
the i/p

@ Enables different ‘representational subspace’
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Multi-headed Self-Attention

2) Multiply with a weight
matrix W/ that was trained

1) Concatenate all the attention heads
jointly with the model

f x

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Credits: Jay Alammar
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Multi-headed Self-Attention

Dr. Konda Reddy Mopuri

5 3 | Attention:
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Layer: Input - Input -
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The_

animal_
didn_

L
Cross_
the_
street_

because_

was_
too_
tire

Credits: Jay Alammar
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Transformer Layers

@ Neural nets benefit greatly from the depth
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@ Neural nets benefit greatly from the depth
@ — stack multiple self-attention layers
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Transformer Layers M e

@ Neural nets benefit greatly from the depth
@ — stack multiple self-attention layers

@ To improve the training efficiency, introduce residual connections
(requires to maintain the dimensionality)
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Transformer Layers | [

@ Neural nets benefit greatly from the depth
@ — stack multiple self-attention layers

@ To improve the training efficiency, introduce residual connections
(requires to maintain the dimensionality)

@ Followed by Layer normalization
Z = LayerNorm[Y (X)) + X]
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Transformer Layers

@ Output vectors are constrained to lie in the subspace spanned by the
i/p vectors
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Transformer Layers “ e

@ Output vectors are constrained to lie in the subspace spanned by the
i/p vectors

@ Enhance the expressive capability/flexibility by post-processing using
a nonlinear neural net (MLP)
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Transformer Layers | [

@ Output vectors are constrained to lie in the subspace spanned by the
i/p vectors

@ Enhance the expressive capability/flexibility by post-processing using
a nonlinear neural net (MLP)

@ This should not affect the transformer’s ability to process variable
length i/p
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Transformer Layers

@ Output vectors are constrained to lie in the subspace spanned by the
i/p vectors

@ Enhance the expressive capability/flexibility by post-processing using
a nonlinear neural net (MLP)

@ This should not affect the transformer’s ability to process variable
length i/p

@ Same share net applies to all the o/p tokens (followed by residual

connection and normalization)
X = LayerNorm[MLP|Z] + Z]
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